three.js使用gpu選取物體並計算交點位置

光線投射法

使用three.js自帶的光線投射器(Raycaster)選取物體非常簡單,代碼如下所示:

var raycaster = new THREE.Raycaster();
var mouse = new THREE.Vector2();

function onMouseMove(event) {
    // 計算鼠標所在位置的設備坐標
    // 三個坐標分量都是-1到1
    mouse.x = event.clientX / window.innerWidth * 2 - 1;
    mouse.y = - (event.clientY / window.innerHeight) * 2 + 1;
}

function pick() {
    // 使用相機和鼠標位置更新選取光線
    raycaster.setFromCamera(mouse, camera);

    // 計算與選取光線相交的物體
    var intersects = raycaster.intersectObjects(scene.children);
}

它是採用包圍盒過濾,計算投射光線與每個三角面元是否相交實現的。

但是,當模型非常大,比如說有40萬個面,通過遍歷的方法選取物體和計算碰撞點位置將非常慢,用戶體驗不好。

但是使用gpu選取物體不存在這個問題。無論場景和模型有多大,都可以在一幀內獲取到鼠標所在點的物體和交點的位置。

使用GPU選取物體

實現方法很簡單:

1.  創建選取材質,將場景中的每個模型的材質替換成不同的顏色。

2. 讀取鼠標位置像素顏色,根據顏色判斷鼠標位置的物體。

具體實現代碼:

1. 創建選取材質,遍歷場景,將場景中每個模型替換為不同的顏色。

let maxHexColor = 1;

// 更換選取材質
scene.traverseVisible(n => {
    if (!(n instanceof THREE.Mesh)) {
        return;
    }
    n.oldMaterial = n.material;
    if (n.pickMaterial) { // 已經創建過選取材質了
        n.material = n.pickMaterial;
        return;
    }
    let material = new THREE.ShaderMaterial({
        vertexShader: PickVertexShader,
        fragmentShader: PickFragmentShader,
        uniforms: {
            pickColor: {
                value: new THREE.Color(maxHexColor)
            }
        }
    });
    n.pickColor = maxHexColor;
    maxHexColor++;
    n.material = n.pickMaterial = material;
});

 

PickVertexShader:

void main() {
    gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}

 

PickFragmentShader:

uniform vec3 pickColor;

void main() {
    gl_FragColor = vec4(pickColor, 1.0);
}

 

2.  將場景繪製在WebGLRenderTarget上,讀取鼠標所在位置的顏色,判斷選取的物體。

let renderTarget = new THREE.WebGLRenderTarget(width, height);
let pixel = new Uint8Array(4);

// 繪製並讀取像素
renderer.setRenderTarget(renderTarget);
renderer.clear();
renderer.render(scene, camera);
renderer.readRenderTargetPixels(renderTarget, offsetX, height - offsetY, 1, 1, pixel); // 讀取鼠標所在位置顏色

// 還原原來材質,並獲取選中物體
const currentColor = pixel[0] * 0xffff + pixel[1] * 0xff + pixel[2];

let selected = null;

scene.traverseVisible(n => {
    if (!(n instanceof THREE.Mesh)) {
        return;
    }
    if (n.pickMaterial && n.pickColor === currentColor) { // 顏色相同
        selected = n; // 鼠標所在位置的物體
    }
    if (n.oldMaterial) {
        n.material = n.oldMaterial;
        delete n.oldMaterial;
    }
});

說明:offsetX和offsetY是鼠標位置,height是畫布高度。readRenderTargetPixels一行的含義是選取鼠標所在位置(offsetX, height – offsetY),寬度為1,高度為1的像素的顏色。

pixel是Uint8Array(4),分別保存rgba顏色的四個通道,每個通道取值範圍是0~255。

完整實現代碼:

使用GPU獲取交點位置

實現方法也很簡單:

1. 創建深度着色器材質,將場景深度渲染到WebGLRenderTarget上。

2. 計算鼠標所在位置的深度,根據鼠標位置和深度計算交點位置。

具體實現代碼:

1. 創建深度着色器材質,將深度信息以一定的方式編碼,渲染到WebGLRenderTarget上。

深度材質:

const depthMaterial = new THREE.ShaderMaterial({
    vertexShader: DepthVertexShader,
    fragmentShader: DepthFragmentShader,
    uniforms: {
        far: {
            value: camera.far
        }
    }
});

DepthVertexShader:

precision highp float;

uniform float far;

varying float depth;

void main() {
    gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
    depth = gl_Position.z / far;
}

DepthFragmentShader:

precision highp float;

varying float depth;

void main() {
    float hex = abs(depth) * 16777215.0; // 0xffffff

    float r = floor(hex / 65535.0);
    float g = floor((hex - r * 65535.0) / 255.0);
    float b = floor(hex - r * 65535.0 - g * 255.0);
    float a = sign(depth) >= 0.0 ? 1.0 : 0.0; // depth大於等於0,為1.0;小於0,為0.0。

    gl_FragColor = vec4(r / 255.0, g / 255.0, b / 255.0, a);
}

重要說明:

a. gl_Position.z是相機空間中的深度,是線性的,範圍從cameraNear到cameraFar。可以直接使用着色器varying變量進行插值。

b. gl_Position.z / far的原因是,將值轉換到0~1範圍內,便於作為顏色輸出。

c. 不能使用屏幕空間中的深度,透視投影后,深度變為-1~1,大部分非常接近1(0.9多),不是線性的,幾乎不變,輸出的顏色幾乎不變,非常不準確。

d. 在片元着色器中獲取深度方法:相機空間深度為
gl_FragCoord.z,屏幕空間深度為
gl_FragCoord.z /  gl_FragCoord.w

e. 上述描述都是針對透視投影,正投影中gl_Position.w為1,使用相機空間和屏幕空間深度都是一樣的。

f. 為了盡可能準確輸出深度,採用rgb三個分量輸出深度。gl_Position.z/far範圍在0~1,乘以0xffffff,轉換為一個rgb顏色值,r分量1表示65535,g分量1表示255,b分量1表示1。

 

完整實現代碼:

 

2. 讀取鼠標所在位置的顏色,將讀取到的顏色值還原為相機空間深度值。

a. 將“加密”處理后的深度繪製在WebGLRenderTarget上。讀取顏色方法

let renderTarget = new THREE.WebGLRenderTarget(width, height);
let pixel = new Uint8Array(4);

scene.overrideMaterial = this.depthMaterial;

renderer.setRenderTarget(renderTarget);

renderer.clear();
renderer.render(scene, camera);
renderer.readRenderTargetPixels(renderTarget, offsetX, height - offsetY, 1, 1, pixel);

說明:offsetX和offsetY是鼠標位置,height是畫布高度。readRenderTargetPixels一行的含義是選取鼠標所在位置(offsetX, height – offsetY),寬度為1,高度為1的像素的顏色。

pixel是Uint8Array(4),分別保存rgba顏色的四個通道,每個通道取值範圍是0~255。

 

b. 將“加密”后的相機空間深度值“解密”,得到正確的相機空間深度值。

if (pixel[2] !== 0 || pixel[1] !== 0 || pixel[0] !== 0) {
    let hex = (this.pixel[0] * 65535 + this.pixel[1] * 255 + this.pixel[2]) / 0xffffff;

    if (this.pixel[3] === 0) {
        hex = -hex;
    }

    cameraDepth = -hex * camera.far; // 相機坐標系中鼠標所在點的深度(注意:相機坐標系中的深度值為負值)
}

 

3. 根據鼠標在屏幕上的位置和相機空間深度,插值反算交點世界坐標系中的坐標。

let nearPosition = new THREE.Vector3(); // 鼠標屏幕位置在near處的相機坐標系中的坐標
let farPosition = new THREE.Vector3(); // 鼠標屏幕位置在far處的相機坐標系中的坐標
let world = new THREE.Vector3(); // 通過插值計算世界坐標

// 設備坐標
const deviceX = this.offsetX / width * 2 - 1;
const deviceY = - this.offsetY / height * 2 + 1;

// 近點
nearPosition.set(deviceX, deviceY, 1); // 屏幕坐標系:(0, 0, 1)
nearPosition.applyMatrix4(camera.projectionMatrixInverse); // 相機坐標系:(0, 0, -far)

// 遠點
farPosition.set(deviceX, deviceY, -1); // 屏幕坐標系:(0, 0, -1)
farPosition.applyMatrix4(camera.projectionMatrixInverse); // 相機坐標系:(0, 0, -near)

// 在相機空間,根據深度,按比例計算出相機空間x和y值。
const t = (cameraDepth - nearPosition.z) / (farPosition.z - nearPosition.z);

// 將交點從相機空間中的坐標,轉換到世界坐標系坐標。
world.set(
    nearPosition.x + (farPosition.x - nearPosition.x) * t,
    nearPosition.y + (farPosition.y - nearPosition.y) * t,
    cameraDepth
);
world.applyMatrix4(camera.matrixWorld);

 

完整代碼:

相關應用

使用gpu選取物體並計算交點位置,多用於需要性能非常高的情況。例如:

1. 鼠標移動到三維模型上的hover效果。

2. 添加模型時,模型隨着鼠標移動,實時預覽模型放到場景中的效果。

3. 距離測量、面積測量等工具,線條和多邊形隨着鼠標在平面上移動,實時預覽效果,並計算長度和面積。

4. 場景和模型非常大,光線投射法選取速度很慢,用戶體驗非常不好。

這裏給一個使用gpu選取物體和實現鼠標hover效果的圖片。紅色邊框是選取效果,黃色半透明效果是鼠標hover效果。

 

 

 

看不明白?可能你不太熟悉three.js中的各種投影運算。下面給出three.js中的投影運算公式。

 

three.js中的投影運算

1. modelViewMatrix = camera.matrixWorldInverse * object.matrixWorld

2. viewMatrix = camera.matrixWorldInverse

3. modelMatrix = object.matrixWorld

4. project = applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix )

5. unproject = applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld )

6. gl_Position = projectionMatrix * modelViewMatrix * position
                      = projectionMatrix * camera.matrixWorldInverse * matrixWorld * position
                      = projectionMatrix * viewMatrix * modelMatrix * position

 

參考資料:

1. 完整實現代碼:

2. 基於three.js的開源三維場景編輯器:

3. OpenGL中使用着色器繪製深度值:https://stackoverflow.com/questions/6408851/draw-the-depth-value-in-opengl-using-shaders

4. 在glsl中,獲取真實的片元着色器深度值:https://gamedev.stackexchange.com/questions/93055/getting-the-real-fragment-depth-in-glsl

 

本站聲明:網站內容來源於博客園,如有侵權,請聯繫我們,我們將及時處理【其他文章推薦】

※帶您來了解什麼是 USB CONNECTOR  ?

※自行創業 缺乏曝光? 下一步"網站設計"幫您第一時間規劃公司的門面形象

※如何讓商品強力曝光呢? 網頁設計公司幫您建置最吸引人的網站,提高曝光率!!

※綠能、環保無空污,成為電動車最新代名詞,目前市場使用率逐漸普及化

※廣告預算用在刀口上,網站設計公司幫您達到更多曝光效益